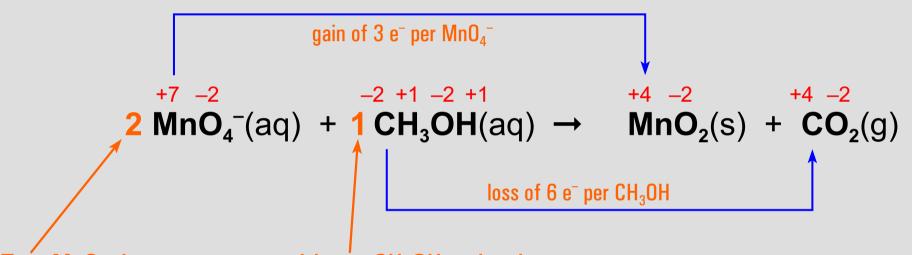

Balancing Redox Equations in Neutral or Acidic Solution (Oxidation-Number Method)

Step 1: Write the unbalanced equation (the "acidic" condition is not important at this point).

$$MnO_4^-(aq) + CH_3OH(aq) \rightarrow MnO_2(s) + CO_2(g)$$

Step 2: Assign oxidation numbers.

Step 3: Determine the number of electrons gained and lost by the reactants.



Each carbon atom loses 6 electrons (-2 to +4).

There is one C in each CH₃OH.

Therefore, there is a loss of 6 electrons for every CH₃OH that reacts.

Step 4: Add coefficients to the reactants to balance the electron transfer.

Two MnO_4^- ions must react with one CH_3OH molecule to balance the electron transfer — two MnO_4^- will gain **6** electrons and one CH_3OH will lose **6** electrons.

(The "1" is not normally written in the equation but is included here for clarity.)

Step 5: Balance all elements except oxygen and hydrogen.

$$2 \text{ MnO}_4^-(\text{aq}) + \text{CH}_3\text{OH}(\text{aq}) \rightarrow 2 \text{ MnO}_2(\text{s}) + \text{CO}_2(\text{g})$$

Two MnO_2 are needed to balance the Mn atoms. The carbon atoms are already balanced (one on each side). Do not balance oxygen or hydrogen at this point.

Step 6: Balance oxygen using water molecules.

$$2 \text{ MnO}_4^-(aq) + CH_3OH(aq) \rightarrow 2 \text{ MnO}_2(s) + CO_2(g) + 3 H_2O(l)$$

There are 9 oxygen atoms on the reactant side and only 6 oxygen atoms on the product side. Three water molecules must be added to the product side to balance the oxygen atoms.

Step 7: Balance hydrogen using hydrogen ions.

$$2 H^{+}(aq) + 2 MnO_{4}^{-}(aq) + CH_{3}OH(aq) → 2 MnO_{2}(s) + CO_{2}(g) + 3 H_{2}O(l)$$

There are 4 hydrogen atoms on the reactant side and 6 hydrogen atoms on the product side. Two hydrogen ions must be added to the reactant side to balance the hydrogen atoms.

Step 8: Check the equation for balanced atoms and charge.

$$2 H^{+}(aq) + 2 MnO_{4}^{-}(aq) + CH_{3}OH(aq) \rightarrow 2 MnO_{2}(s) + CO_{2}(g) + 3 H_{2}O(l)$$

6 hydrogen atoms

2 manganese atoms

9 oxygen atoms

1 carbon atom

O charge (2 positives and 2 negatives)

6 hydrogen atoms

2 manganese atoms

9 oxygen atoms

1 carbon atom

0 charge